Naval Research Laboratory

Washington, DC 20375-5000

AD-A218 066

NRL Memorandum Report 6601

Some Remarks on Solutions of Fermat's Last Equation in Terms of Wright's Hypergeometric Function

ALLEN R. MILLER

Information Technology Division

EMANUEL VEGH

Radar Division

WILLIAM P. WARDLAW

Department of Mathematics U.S. Naval Academy Annapolis, MD 21402

February 16, 1990

SPEB 16 1990 B

Approved for public release; distribution unlimited.

90

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE							Form Approved OMB No. 0704-0188	
18 REPORT SECURITY CLASSIFICATION UNCLASSIFIED				16. RESTRICTIVE MARKINGS				
2a SECURITY CLASSIFICATION AUTHORITY				DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.				
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE								
4. PERFORMING ORGANIZATION REPORT NUMBER(S)				5. MONITORING ORGANIZATION REPORT NUMBER(S)				
NRL Memorandum Report 6601								
6a. NAME OF PERFORMING ORGANIZATION			6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION				
Naval Rese	arch Labora	itory	Code 5350					
6c. ADDRESS (City, State, an	d ZIP Code)	<u></u>	7b. ADDRESS (City, State, and ZIP Code)				
Washington	n, DC 2037	75-5000						
8a. NAME OF FUNDING / SPONSORING ORGANIZATION			8b. OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
	Systems Co		APC-209C	<u> </u>				
8c. ADDRESS (City, State, and ZIP Code)				10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT				
337. 1.	D.C. 202	(1.1012		ELEMENT NO	NO.	NO	ACCESSION NO	
Washington, DC 20361-1213 11. TITLE (Include Security Classification)				64211N	<u>.L</u>	<u> </u>	DN180-248	
Some Rem	arks on Sol		t's Last Equation in	Terms of Wri	ght's Hypergon	netric F	unction	
12. PERSONAL		ech Emanuel	Wardlaw, William I	•				
Miller, Allen R., Vegh, Emanuel, Wardlaw, William F 13a. TYPE OF REPORT 13b. TIME COVERED				14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT				
Final	المركب المراجع			1990 February 16 11				
16 SUPPLEME	NTARY NOTA	rion						
17	17 COSATI CODES 1			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)				
FIELD	GROUP	SUB-GROUP	Fermat's last	theorem Transcendental numbers				
			Hypergeometr	etric functions Trinomial equation				
N.			and identify by block r					
tion. Son		operties of these	tion are expressed it solutions are discu					
		المستدادة						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT MUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS				21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED				
22a NAME OF RESPONSIBLE INDIVIDUAL				226 TELEPHONE	(include Area Code			
Emanuel Vegh				(202) 767	-2401	1	Code 5350	

DD Form 1473, JUN 86

Previous editions are obsolete. S/N 0102-LF-014-6603 SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

INTRODUCTION	1
MAIN RESULT	2
ANOTHER DERIVATION OF EQ. (10)	5
ADDITIONAL OBSERVATIONS	6
CONCLUSION AND ACKNOWLEDGEMENT	7
REFERENCES	7

SOME REMARKS ON SOLUTIONS OF FERMAT'S LAST EQUATION IN TERMS OF WRIGHT'S HYPERGEOMETRIC FUNCTION

INTRODUCTION

In the seventeenth century the French mathematician and lawyer, Pierre de Fermat (1601–1665) stated that he had a proof of a result which is now known as

Fermat's Last Theorem: If n is an integer greater than 2, then the equation

$$x^n + y^n = z^n \tag{1}$$

has no solution in positive integers.

Fermat did not give a proof of this result and, to this day, no one else has either.

Recently it has been shown [1,2] that if Eq. (1) has a solution in positive real numbers with x < y, then the exponent in Eq. (1) is given by

$$n = \log_{y/z}[\lambda \Psi(\lambda)], \qquad (2)$$

where

$$\lambda = \log_{x/z}(y/z) , \qquad (3)$$

and

$$\Psi(\lambda) = {}_{1}\Psi_{1}\begin{bmatrix} (\lambda,\lambda) & ; \\ (\lambda+1,\lambda-1) & ; \end{bmatrix}, \quad 0 < \lambda < 1.$$
 (4)

The function $_{1}\Psi_{1}$ in Eq. (4) is a special case of Wright's generalized hypergeometric function $_{p}\Psi_{q}$ whose series representation is given by

$${}_{p}\Psi_{q}\left[\begin{array}{c}(\alpha_{1},A_{1}),\ldots,(\alpha_{p},A_{p}) \ ;\\ (\beta_{1},B_{1}),\ldots,(\beta_{q},B_{q}) \ ;\end{array}\right]=\sum_{n=0}^{\infty}\frac{\prod_{i=1}^{p}\Gamma(\alpha_{i}+A_{i}n)}{\prod_{i=1}^{q}\Gamma(\beta_{i}+B_{i}n)}\frac{z^{n}}{n!}.$$
 (5)

In this paper we shall give an equivalent form of Fermat's last theorem in terms of the Wright function $\Psi(\lambda)$ and the related Wright function $\hat{\Psi}(\lambda)$ defined by

$$\hat{\Psi}(\lambda) \equiv {}_{1}\Psi_{1} \left[\begin{array}{cc} (1,\lambda) & ; \\ (2,\lambda-1) & ; \end{array} - 1 \right] , \quad 0 < \lambda < 1 .$$
 (6)

In addition, we shall give some elementary properties of the functions $\Psi(\lambda)$ and $\hat{\Psi}(\lambda)$.

MAIN RESULT

Theorem: The following are equivalent:

- (a) Fermat's Last Theorem is false.
- (b) There is a transcendental number $\lambda \in (0,1)$ and a positive integer n > 2 such that $\lambda \Psi(\lambda)$ and $\hat{\Psi}(\lambda)$ are simultaneously *n*-th powers of rational numbers in (0,1).

In order to prove this theorem we prove the following two lemmas.

Lemma 1: If Eq. (1) has a solution in positive integers with x < y and gcd(x, y, z) = 1, then there is a unique transcendental number λ in the interval (0,1) such that

$$\left(\frac{x}{z}\right)^{\lambda} = \frac{y}{z} \ . \tag{7}$$

Proof. The function $f(\lambda) \equiv (x/z)^{\lambda}$ is a decreasing continuous function of λ on [0,1], since x/z < 1. Moreover, f(1) = x/z < y/z < 1 = f(0), so by the

intermediate value theorem there is a unique λ in the interval (0,1) such that

$$f(\lambda) = \left(\frac{x}{z}\right)^{\lambda} = \frac{y}{z}.$$

Since gcd(x,y,z) = 1, the integers x,y,z are pairwise relatively prime. Suppose $\lambda = a/b$ is rational, where a and b are relatively prime positive integers. Then by Eq. (7),

$$\left(\frac{x}{z}\right)^{a/b} = \frac{y}{z}$$

or

$$x^a z^b = y^b z^a . (8)$$

Since x, y, z are pairwise relatively prime, there must be a prime p that divides y but divides neither x nor z. So p divides the right side of Eq. (8) but not the left side, and we have a contradiction. Thus λ must be irrational.

This corrects the proof that λ is irrational given in [1, p.7]. In [1,2] a second proof of this result is given.

In order to show the transcendence of λ we shall need the result of Gelfond and Schneider [3, p. 21] which states that if α and β are algebraic, $\alpha \neq 0, 1$ and β is irrational, then α^{β} is transcendental.

From Eq. (7), since x/z is algebraic, 0 < x/z < 1, and λ is irrational, then if λ is also algebraic, y/z would be transcendental, which it is not. Hence λ must be transcendental and the lemma is proved. Note that Eq. (7) is just another form of Eq. (3).

Lemma 2: For all $\lambda \in (0,1)$ we have the identity

$$\lambda \Psi(\lambda) + \hat{\Psi}(\lambda) = 1 . (9)$$

Proof. Using Eq. (5) we see that since $\Gamma(1+z) = z\Gamma(z)$,

$$_{1}\Psi_{1}\begin{bmatrix} (1,\lambda) & ; \\ (2,\lambda-1) & ; \end{bmatrix} = \sum_{n=0}^{\infty} \frac{\Gamma(1+\lambda n)}{\Gamma(2+(\lambda-1)n)} \frac{(-1)^{n}}{n!}$$

$$= 1 + \sum_{n=1}^{\infty} \frac{\Gamma(1+\lambda n)}{\Gamma(2+(\lambda-1)n)} \frac{(-1)^{n}}{\Gamma(1+n)}$$

$$= 1 + \sum_{n=0}^{\infty} \frac{\Gamma(1+\lambda+\lambda n)}{\Gamma(\lambda+1+(\lambda-1)n)} \frac{(-1)^{n+1}}{\Gamma(2+n)}$$

$$= 1 - \sum_{n=0}^{\infty} \frac{\lambda(1+n)\Gamma(\lambda+\lambda n)}{\Gamma(\lambda+1+(\lambda-1)n)} \frac{(-1)^{n}}{(1+n)\Gamma(1+n)}$$

$$= 1 - \lambda \sum_{n=0}^{\infty} \frac{\Gamma(\lambda+\lambda n)}{\Gamma(\lambda+1+(\lambda-1)n)} \frac{(-1)^{n}}{n!} .$$

Now using Eqs. (4)-(6) we have the result Eq. (9).

Proof of Theorem: If Fermat's Theorem is false, then Eq. (1) holds for some n > 2 and positive integers x < y < z. By Lemma 1 there is a unique transcendental number $\lambda \in (0,1)$ such that Eq. (2) holds, i.e.,

$$\lambda\Psi(\lambda)=(y/z)^n$$

and from Lemma 2,

$$\hat{\Psi}(\lambda) = 1 - \lambda \Psi(\lambda)$$
$$= 1 - (y/z)^n$$

so that

$$\hat{\Psi}(\lambda) = (x/z)^n \ . \tag{10}$$

(We shall derive Eq. (10) in another way in the next section.)

Conversely, if for some transcendental $\lambda \in (0,1)$, both $\lambda \Psi(\lambda)$ and $\hat{\Psi}(\lambda)$ are n-th (n > 2) powers of some rational numbers, say

$$\lambda\Psi(\lambda)=(u_1/v_1)^n$$
, $\hat{\Psi}(\lambda)=(u_2/v_2)^n$,

then from Lemma 2 we have

$$(u_1v_2)^n + (u_2v_1)^n = (v_1v_2)^n$$

and the theorem is proved.

ANOTHER DERIVATION OF EQ. (10)

From Eq. (3) we have $y = x^{\lambda}z^{1-\lambda}$ which when substituted into Eq. (1) gives

$$(x/z)^n + (x/z)^{\lambda n} - 1 = 0$$
.

Setting $\xi = (x/z)^n$ we have

$$\xi + \xi^{\lambda} - 1 = 0, \quad 0 < \lambda < 1.$$
 (11)

In order to solve Eq. (11) for ξ as a function of λ we shall need the following result. The positive root of the trinomial equation

$$\xi^p + \mu \xi^q - 1 = 0, \quad p > q > 0$$
 (12)

is given by

$$\xi = \frac{1}{p} {}_{1}\Psi_{1} \left[\begin{array}{cc} (1/p, \ q/p) & ; \\ (1+1/p, \ q/p-1) & ; \end{array} - \mu \right] , \qquad (13)$$

for real μ such that

$$|\mu| < (q/p)^{-q/p} (1 - q/p)^{q/p-1} \le 2$$
 (14)

For integers p and q, Mellin in 1915 [4] gave the series solution, Eq. (13), of the trinomial Eq. (12). However, his result is valid for real p and q. Lagrange circa 1768 [5] derived essentially the same result in terms of a series of binomial coefficients. In 1758 [6] Lambert gave the solution of trinomial equations. Ramanujan [7, pp. 71, 307] studied and derived solutions of trinomials in Chapter 3 of his notebooks (1903–1914) and in his first quarterly report (1913).

Now set p=1, $q=\lambda$, $\mu=1$ in Eqs. (12)-(13). Then the condition Eq. (14) is easily checked and using the definition of $\hat{\Psi}(\lambda)$ given by Eq. (6) we arrive at Eq. (10).

ADDITIONAL OBSERVATIONS

From Eq. (10) we see that the exponent in Eq. (1) is also given by

$$n = \log_{x/x} \hat{\Psi}(\lambda) . \tag{15}$$

This result is somewhat less complex than the result Eq. (2). We may also write

$$\hat{\Psi}(\lambda) = \lambda \sum_{n=0}^{\infty} (-1)^n {}_2F_1[-n, (1-\lambda)(n+2); 2; 1],$$

$$\hat{\Psi}(\lambda) = \lambda \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \begin{pmatrix} \lambda(2+n)-1 \\ n \end{pmatrix}, \quad 0 < \lambda < 1.$$

The latter equations follow directly from Eq. (9) and [1, Eqs. (19)-(20)]. In addition from Eqs. (2), (3), (9), and (15) we observe that

$$[\hat{\Psi}(\lambda)]^{\lambda} = 1 - \hat{\Psi}(\lambda) ,$$

$$[1 - \lambda \Psi(\lambda)]^{\lambda} = \lambda \Psi(\lambda) .$$

CONCLUSION AND ACKNOWLEDGEMENT

Fermat's Last Theorem may be stated in equivalent form using Wright's generalized hypergeometric function $_1\Psi_1$.

The authors thank Chung C. Yang for pointing out to us that λ is transcendental.

REFERENCES

- 1. A.R. Miller, "On the Equation $x^a + y^a = z^a$," NRL Report 9178, Feb. 1989.
- 2. A.R. Miller, "Solutions of Fermat's Last Equation in Terms of Wright's Hypergeometric Function," Fibonacci Quarterly, to appear.
- 3. S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, Massachusetts, 1966.
- 4. Hj. Mellin, "Zur Theorie der Trinomischen Gleichungen," Ann. Ac. Sc. Fenn., vol. 7, no. 7, 1915.
- 5. J.L. Lagrange, Mémoires de l'Académie de Berlin, 1768.
- 6. J.H. Lambert, Observationes variae in mathesin puram, in Opera Mathematica, vol. 1, Orell Fussli, Zurich, 1946, pp. 16-51.
- 7. B.C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, New York, 1985.